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1. Introduction

It has long been speculated that closed string tachyons lead to the decay of spacetime.

For spatially localized tachyons, it has been clear for several years that this picture is

correct and gives a decay from one space(time) into another (e.g. [1 – 4]). Recent work

has provided insights into decays in non-localized cases [5 – 10]. In particular, from a

worldsheet perspective, the condensation process gives closed string modes exponentially

growing masses. This is consistent with the idea that there are no closed string states when

the tachyon has fully condensed.

This suggests that there is a vacuum state of the string configuration space that con-

tains nothing, meaning neither matter nor space-time. However, there is much more to the

configuration space of string theory than perturbative closed strings. One might wonder if

there can be excitations of this state other than the spacetime from which we condensed,

namely D-branes without a spacetime interpretation.

This problem has been studied very little for good reason. In the absence of a world-

sheet or spacetime description, there are few tools left with which to study the brane

evolution. The results from the c = 1 matrix model have provided hints at an answer [11].
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In 2d string theory, closed strings in the bulk are given by the collective excitations of

the fermi sea formed from free fermions in an inverted quadratic potential. Meanwhile, an

individual fermion describes the worldvolume theory of a single D0 brane. When tachyon

condensation occurs, the fermi sea drains, thus closed string excitations vanish in the ab-

sence of any collective phenomena. However, one could still have extra fermions separated

from the sea that survive when the sea drains. As a result, there is a clear difference in the

matrix model when branes are present in ‘no-man’s land’.

While these results are interesting, there remain a few questions. The branes that

appear in the matrix model (the free fermions) are unstable, not only in the bosonic string

but also in the type 0A and 0B models (ĉ = 1). One might like to know if stable branes

can survive in this region as well. In addition, the ‘tachyon’ in c = 1 is massless; thus, the

condensation is added by hand. It would be helpful if we could address this question in

the context of stable branes in string theories where the tachyon must condense.

On the other hand, work on localized closed string tachyons has provided evidence that

seems contrary to that from c = 1. In particular, in the study of D0 branes on C/ZN [1],

the D0 branes at the tip gain a large mass. The open string potential is modified by the

tachyon background in such a way that the D-branes move out of the region leaving a

smoothed-out space. This would seem to suggest that branes are lifted in the tachyon

condensate in much the same way as the closed string states.

We will examine these questions in the context of the ‘Nothing’ state presented in [5].

The first reason to consider this scenario is that all D-branes will see the tachyon because

the condensate is not spatially localized. In this case, only spacelike branes can survive

by simply by avoiding the region where the condensate lies. The second reason is simply

that the worldsheet theory is very similar to Liouville theory. For this reason, we can

focus on the aspects of the worldsheet description that also appear in the non-perturbative

description of the d ≤ 2 string. In particular, we will discuss the boundary state and the

one-point function on the disk which describe the branes in terms of the closed strings

they source. In order to get intuition for these quantities, we will relate the disk one point

function to the one point function in a field theory model with an arbitrary source. This

will help separate out the effect of the tachyon on the brane from its effect on the closed

strings the brane sources.

The results presented here suggest that branes generically gain large masses in the

tachyon background. There are branes whose boundary states seem insensitive to the

tachyon background; although they will gain a large effective mass from the closed strings

they source. These results arise in a way consistent with all previous results and suggest

the origin of the seeming discrepancy in earlier work.

The paper is organized as follows: in section 2 we will review the worldsheet RG

description of tachyon condensation, focusing on the model in [5]. In section 3, we will

consider the same model on a worldsheet with boundaries. The behavior of the branes will

be inferred from the boundary state description at early times when the tachyon vacuum

expectation value is small. In section 4, we will discuss the interpretation of these states

and we will discuss how this approach fits with other results. In section 5 we will make the

connection with conformal perturbation theory. Finally, in section 6, we will discuss some
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interesting open questions and future directions of study related to these results.

2. Tachyons and the worldsheet

In [5], a Milne universe in the critical dimension was considered where a circle was given

a time dependent radius and anti-periodic boundary conditions on the fermions. The

remaining eight dimensions were left flat. This example is characteristic of a larger class of

cosmologies which were also considered, but we will focus on the Milne case for concreteness.

At early (or late) times, when the radius of the circle is string scale, a winding tachyon

appears in the spectrum. In a type II theory, the worldsheet theory in the presence of the

condensing tachyon is deformed by the operator
∫

d2θ(2iµe−κX̃0 cos(w ˜̄Ω)), (2.1)

where Ω̄ is the T-dual coordinate on the circle and the tilde denotes the superfields where

X0 and Ω are the bosonic components. If we integrate the fermionic coordinate, the bosonic

action is

iSbos = i

∫

dτdσ

(

(−∂X0∂̄X0) + v2X2
0∂Ω∂̄Ω + ∂Xi∂̄Xi

+µ2e−2κX0

{(

w

vX0
sin(wΩ̄)

)2

− (κ cos(wΩ̄))2
})

. (2.2)

Where Xi are the flat eight dimensional coordinates and v is the rate of expansion of the

universe.

The exponentially growing term acts like a mass that should suppress the path integral

when X0 ¿ −1. This was demonstrated in [5] when using a Wick rotation on all the spatial

coordinates in order to keep the term e−κX0 real. After rotation, the integral is convergent

and it was shown in [5] that by integrating out the zero mode of X0 the support of the

path integral lies only in the region without the tachyon. The choice of Wick rotation of

the worldsheet theory is equivalent to a choice of state of the spacetime theory. In general,

the analytic properties of the configuration space of string theory are largely unknown. In

this case, the results seem insensitive to the choice, but this is not generally true of time

dependant backgrounds as shown by [12].

In our analysis, we will take the more standard rotation,

τ ≡ e−iγτγ ,X0 ≡ eiγX0,γ , κ ≡ e−iγκγ , v ≡ e−iγvγ . (2.3)

We would like to be able to use the tools of conformal perturbation theory as much as

possible, and thus it would seem pertinent to maintain semi-classical conformality. One

approach to this problem is to add a background charge in the Euclidean theory to make

up the difference (coefficient of the dilaton coupling). In this case, we will need a dilaton

coupling of the form 2κRX0. In general, these are subtle issues whose validity we will not

address. Nevertheless, our analysis does not require this particular rotation in a crucial

way, thus it seems unlikely that qualitative features we will discuss are at risk.

– 3 –



J
H
E
P
0
4
(
2
0
0
7
)
0
2
5

In particular, this analysis applies under two assumptions. First of all, we will work

only in the regime where the semiclassical action is a good description of the dynamics

(namely (2.2) ). This will be true when the tachyon vacuum expectation value is small and

can be treated as a perturbation. The size of the vev and time derivatives are controlled

in part by µ and κ which will be taken as small. Everything will be treated only to leading

order in these parameters. This will be valid at early times (as measured compared to κ

and log(µ)), but will break down well before the X0 → ∞ limit. Secondly, we will ignore

the contributions of the running dilaton except for its effect on the scaling dimensions of

operators. The dilaton will be involved at later times as discussed in [13].

3. Branes and boundary states

In this section, we will examine D-branes in these closed string tachyon backgrounds using

their worldsheet description. We will ultimately be interested in branes that lie in the

‘Nothing’ region described in [5] in the type II description. On the worldsheet, branes will

appear as boundaries and will generically break supersymmetry. In order to preserve some

of the supersymmetry, boundary terms need to be added to the action. In particular, given

an action of the from
∫

d2zd2θL(θ, θ̄), (3.1)

one should add a boundary term of the form [18]

iη

∮

dxL(θ = θ̄ = 0). (3.2)

The supersymmetry variation of the boundary action will cancel the boundary terms from

the bulk variation with respect to Q + ηQ̄ where η = ±1 and Q, Q̄ are the worldsheet

SUSY generators. In the case under consideration, using the action from (2.2), we need to

add the boundary action

Lbdy = −η

∮

dx(iψµψ̄µ − 2µ cos(wΩ̄)e−κX0). (3.3)

It will be useful to think in terms of a T-dual picture where Ω̄ is a coordinate on the circle.

In particular, we will take Dirichlet boundary conditions on T-dual coordinate such that

we can specify the value of the cosine term. These correspond to wrapped branes with a

Wilson line. In this case, we will be able to decouple the Ω boundary conditions from the

X0 boundary conditions. The D0 branes are a more difficult problem in this setup and we

will not address it here. See [1] for results on D0s in a slightly different context.

The variation of the action with respect to X0 produces the boundary terms,

∮

dx2δX0

(

∂X0

∂y
− ηκµ cos(wΩ̄)e−κX0

)

. (3.4)

The Neumann condition takes a form similar to that of an FZZT brane [19]. If we build a

boundary state with an Ω̄ eigenfunction, we can replace the operator in the X0 boundary
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condition with its eigenvalue. Furthermore, because the second term added to the boundary

action is bosonic, the fermion boundary conditions are those from flat space.

At this point we will not demand conformal invariance beyond the classical level. These

boundary conditions are classically conformal, but not all will be conformal at higher order

in α′. We will return to discuss these points in section 5. In any case, the bulk perturbation

is not exactly conformal so we will proceed via conformal perturbation theory.

The minisuperspace wavefunction for the wrapped brane boundary condition is

Ψb(X0) = exp(−ηµe−κX0 cos(wΩ̄)). (3.5)

This is simply the zero eigenfunction of the minisuperspace quantization of the bound-

ary conditions. Stated differently, it is boundary state overlap with the X0 zero-mode

eigenfunctions. From this basic calculation, we have a potentially interesting result. This

wavefunction takes the form familiar from Liouville theory; however, now we have both

growing and decaying solutions (depending on the sign of ηµ cos(wΩ̄)). Furthermore, stable

branes in type II will ultimately be the superposition of both decaying and growing modes.

Our intuition from Liouville theory suggests these branes live in the ‘nothing state’. In

particular, in c ≤ 1, one typically uses the point where µe−κφ ≈ 1 as representing the end

of the brane. We will not assume that conclusion since it is unclear it is appropriate in

light of the growing solutions. We will return to the subject of interpretations in the next

section. First, let us work out two representative examples.

3.1 Branes at wΩ̄ = nπ

First, we will consider the wrapped brane with wΩ̄ = nπ where n is an integer. The one-

point function contains all the information about the boundary state, but it has a more

direct analog in field theory which we will use for interpretation in section 4. For this

reason, we would like to calculate the one-point function in the CFT for later use. For

the wrapped branes, the boundary state factorizes, and we can deal with the X0 and Ω̄

parts independently. For this choice, it is relatively easy to treat the Ω̄ direction using the

method of images. However, the boundary conditions on X0 are non-trivial and it is not

clear how they will contribute.

In order to make an estimate of the X0 component, we will use a minisuperspace

truncation on the effective theory in the X0 direction. From the wavefunctions for the bulk

modes, the one-point function is given by

〈p|B〉 =

∫

dXµdψµdψ̄µΨ†
pΨB. (3.6)

where |B〉 is the boundary state and Ψp is the wavefunction of a bulk mode with momentum

p. To first order in conformal perturbation theory, the X0 direction behaves as
∫

d2z(∂X0∂̄X0 + κ2µ2e−2κX0) + SSUSY − 2ηµ

∮

dxe−κX0, (3.7)

where SSUSY contains the fermions related by supersymmetry (where we have absorbed

any Ω normalization subtleties into µ). Because we are dealing with Dirichlet boundary
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conditions on Ω, Ψb ∝ δ(Ω̄− Ω̄0) (for the full boundary state, not only the minisuperspace

wavefunction). For this reason, the contributions for the Ω fields will be unimportant for

the qualitative behaviour.

A very similar calculation is done in [18] where the minisuperspace mode expansion

was calculated explicitly. If we impose the boundary conditions that the modes decay

under the effective ‘wall’ then in the NS sector

Ψp ∝ Kip(µe−κX0) (3.8)

where Kα is the modified Bessel function of the second kind. The R sector wavefunctions

are superpositions of Kip± 1

2

. Asymptotically, these behave as

Ψp ≈ exp(−µe−κX0). (3.9)

If we combine this with the boundary wavefunction (3.5) with Ω̄ = 0 and η = −1, then the

two exponentials combine in (3.6) to give a constant. Thus, the one-point function finds

support arbitrarily deep in the condensate.

We could import the exact boundary Super-Liouville results, but it is unclear the so-

lutions should agree at later times or at higher orders in conformal perturbation theory.

The above results agree with the semi-classical limit of the exact super-Liouville solutions.

Therefore, the differences between the approach taken here and using exact Liouville solu-

tions are significant outside the range of validity of our approximation. The minisuperspace

result is also organized in a way that makes interpretation easier. Exact solutions to bound-

ary (super)sine-Liouville might prove useful but have not been calculated to date, as far

as we know.

Recalling that any wrapped brane will be described by ΨB = Ψ(η = +1)±Ψ(η = −1),

all D-branes (except for those with wΩ̃ = π
2 +nπ) will have an exponentially growing piece.

In this treatment, the branes continue into this region, unlike the perturbative strings. This

is a choice of state, which ideally could be chosen in the same manner as the closed strings.

We will return to the issue of interpretation in section 4.

3.2 Branes at wΩ̄ = π
2 + nπ

As suggested by the previous subsection, the case where wΩ̄ = π
2 + nπ seems qualitatively

different from the more generic boundary conditions. What makes this particular choice

interesting is that the boundary term vanishes. The significance of this is simply that

cos(wΩ̄)|B〉 = 0, so all the remaining boundary conditions are unchanged by the boundary

term. To be explicit, the boundary state has the property

|B,wΩ̄ =
π

2
, µ〉 ≡ |B,wΩ̄ =

π

2
, µ = 0〉. (3.10)

As a result, the boundary state for this particular brane is unaltered by the bulk tachyon.

In fact, if one ignored the time dependence from the shrinking radius of the circle, this

boundary state can be explicitly constructed. For this reason, we expect that the brane

survives in the tachyon condensate and its ‘bare’ mass is unaltered. However, because these
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branes source fields their effective mass should still grow rapidly as the closed strings are

massed up.

By comparison with the last section, it should be clear that the one-point function

is significantly altered by the tachyon, even though the boundary state is unchanged. In

particular, the string propagator is still exponentially suppressed.

3.3 Caveats

One might also be concerned about the divergence of the wavefunction as X0 → −∞. In

particular, we could worry that these states are non-normalizable. We will not address

this directly, but it should be pointed out that this analysis is only valid in the weakly

coupled, small tachyon regime, which is far from the X0 → −∞ limit. Thus, the domain of

validity of the worldsheet action is a finite interval in time and thus there are no problems

with non-normalizability. Furthermore, when we Wick rotate back to Lorentzian signature,

these modes will become oscillatory. It is also possible that the dilaton could roll to strong

coupling in this process [13], which will alter the problem dramatically. It remains unclear

whether this will actually be a problematic limit and we will not address it here. In 2d type

0 theories one might expect this problem. The extended branes of both types are present

in type 0 but there is an open string tachyon on their world volume. This additional term

ensures that, for suitable choices of the boundary cosmological constant, the wavefunction

is normalizable.

One might also wonder what role these branes play in the context of black hole evap-

oration. In [20], a family of final states were found for the black hole in which unitarity

was maintained. Additional states with branes could be non-unitary. There are a number

of reasons that this is likely not to be a problem. First of all, the branes all generically get

mass (as we will see), either from the boundary state itself (bare) or from the strings it

sources (dressed). Ultimately, one should be able to choose a final state without massive

branes as is done for the massive closed strings. Secondly, the branes being discussed here

are wrapped on the circle. Therefore, they have measurable charge and have a significant

mass set by the size of the circle at infinity. Thus these branes have a very classical role

in the system and thus are difficult to incorporate in a scheme where the evolution is

non-unitary.

A remaining question is simply whether it is possible to construct a brane anti-brane

system such that the branes survive without developing an open string tachyon. While it is

true that the two can reach the condensate at different times, the open string tachyon may

still develop inside the condensate. For example, the ZZ brane lies at infinity in the strong

coupling region of Liouville theory (which is equivalent to a spacelike brane at X0 = −∞ in

this model). However, the closed string one point function is non-zero and the open string

spectrum contains two states (a tachyon and a massless gauge field). All of these branes

eventually decay despite the presence of a background that one might naively expect would

lift the mass of the tachyon.

– 7 –
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4. Interpretation

4.1 Growing sources

Because we are studying the source of closed strings in the presence of a tachyon back-

ground, it is hard to distinguish between the effects from the string and the effects from

the brane. In an attempt to separate these two independent contributions, let us consider

a field theory model of the process. We will take a scalar field φ with a mass that grows

exponentially in time, but is given some arbitrary source j(t, x). The scalar field will play

the role of the closed strings and the source will be a D-brane. The Lagrangian for this

system, by analogy with the previous section is

L = ∂µφ∂µφ − µ2κ2e2κtφ2 + j(t, x)φ. (4.1)

We are interested in how the one point function 〈φ〉 = ϕ is related to j. In this model, the

one-point function is simply the solution to the equations of motion. We will proceed in the

Euclidian theory, but the relation to the Lorentzian theory will be completely transparent.

We will work in momentum space in the ‘spatial’ directions for simplicity. Thus, we are

looking for the solution to

∂2
t ϕ − µ2κ2e2κtϕ − p2ϕ = j(t, p). (4.2)

By the change of variables z = µeκt, this takes the form

∂z(z∂zϕ) − (z + p2z−1)ϕ = j(z, p)z−1 = j̃. (4.3)

Because this is in Sturm-Liouville form, the differential operator is self-adjoint and hence

the Green’s function is given by

∂z(z∂zG(z, y)) − (z + p2z−1)G(z, y) = δ(z − y). (4.4)

The homogenous solution to this is simply the combination of modified Bessel functions

(for the Lorentzian case one simply removes the word ‘modified’). Finding the Green’s

function simply requires taking solution from z < y and z > y and matching with the

conditions that G+(z = y) = G−(z = y) and y(∂zG+(z = y) − ∂zG−(z = y)) = 1.

However, as usual, one is left with choice of boundary conditions on the Green’s func-

tion which is the same as choosing the appropriate propagator. As in the string theory

example, we will define this by the Euclidian theory where there is a natural choice. In

particular, the Euclidian theory has exponentially growing and decaying solutions. Thus,

we require that the Green’s function is finite as t → ±∞. This choice yields the solution

G(z, y) = Kp(z)Ip(y), y < z

= Ip(z)Kp(y), y > z (4.5)

If we take p2 ' 0, and look at the asymptotic behaviour we expect that for t À t̃,

ϕ(t) '

∫

dt̃j(t̃) exp(−µ|eκt − eκt̃|). (4.6)
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In the Euclidian calculation, one sees these rapidly decaying exponentials for any source.

This is the same expression as the semiclassical one-point function (3.6). In particular,

the NS sector semiclassical mode is a modified Bessel function as well. Thus, in this analogy

ΨB → j. If we measure mass by coupling to gravitons, then the mass grows very rapidly.

By comparison, the flat space branes and the surviving branes in this picture simply have

ΨB ∝ 1, as one would expect for an object of constant tension.

To make a more direct appeal to the boundary state, for a brane in flat space, the

tension of the brane arises in that context from the normalization of the state. These

branes only have delta function dependence on the zero modes for the Dirichlet direction

and are independent of the zero modes in the Neumann directions. Therefore, if we were to

group the zero mode dependence into the normalization, these exponential contributions

would take precisely the form of a time dependant tension/mass.

It should be pointed out that the mass growing as m ∝ eµeκt

may not be correct at

later times (although this scaling could potentially be explained using methods from [14]).

This work is valid when the tachyon vev is small. Hence, this is a good description to

leading order in the perturbative expansion leaving

m ∝ 1 + ηµκ cos(wΩ̃)e−κX0 + . . . (4.7)

We can see that the choices of η leave a growing and shrinking mass as the tachyon grows;

however, the precise form the growth remains to be understood.

Finally, this interpretation, as stated before, applies only to the ‘bare’ mass. There are

additional contributions to the total mass that come from the fields sourced by the brane.

Because these fields have exponentially growing masses, the ‘dressed’ brane will be very

massive.1

4.2 Comparisons to previous results

D-branes in the presence of closed string tachyons was one of the major developments in the

subject [1]. There, the worldvolume theory of a point-like brane was studied as a closed

string tachyon appears near the tip of the cone. Before the appearance of the tachyon,

the moduli space of the brane is precisely C/ZN . The tachyon vev generically breaks the

symmetries of the worldvolume theory, smoothing out the moduli space, and removing the

tip of the cone.

However, if we demand that the D-brane remain at the tip, the energy of the solution

(and hence the mass of the brane) grows as T 2 where T is the tachyon vev. This again is

simply the leading order contribution to the potential and is only valid for small T . Thus

there is nothing inconsistent with the form of the growing masses in these two cases.

The study of D-branes in c=1 matrix model [11] would seem to be slightly at odds

with the above results. In that context, branes survive as individual fermions far removed

from the draining sea. In particular, the claim there is that the set of branes that survive

is certainly more than measure zero. However, in that context, one is studying the bosonic

string in two dimensions. This is clear that the behaviour of the branes in this background

1We would like to thank Eva Silverstein for stressing this point
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is due entirely to the requirement of worldsheet supersymmetry and is thus not at odds

with their results.

When considering unstable branes like those in bosonic theories, there are relevant

operators allowed on the boundary (the open-string tachyon). These operators lead to

the decay of the brane, but can be tuned in order to have the decay occur after the

decay of the spacetime itself. The absence of supersymmetry allows one to tune the two

effects completely independently. However, in the supersymmetric context the two are

tied together (in the absence of open string tachyons), and this significantly restricts the

outcome. This ability to tune arbitrarily should not be confused with bosonic branes

being ‘more stable’. Furthermore, as we will see in the next section, these bulk operators

(marginal or relevant) can force one to include relevant boundary operators even if you set

them to zero by hand before perturbing the theory.

4.3 T-dual description

Since we are using T-duality, let us describe the T-dual branes explicitly. The T-dual of type

II on a Scherk-Schwarz circle is a type 0 theory on a circle with a (−1)FR orbifold, where

FR is the right moving worldsheet fermion number [15, 16]. The type 0 GSO projection

is of the form PNSNS
GSO = 1

2(1 + (−1)FL+FR) and PRR
GSO = 1

2 (1 ± (−1)FL+FR). In flat space,

this projection results in two types of branes for a given dimensionality, one for each sign

of η. With the orbifold, there is no longer a global definition of each type of brane. Under

a rotation about the circle, a magnetic brane will turn into an electric brane. These

correspond to a change in sign of the Wilson lines on the type II wrapped branes. Thus

the superposition of a magnetic and electric brane in type 0 gives the right boundary state

for type II and is invariant under the type 0 orbifold action.

Under tachyon condensation, one of the type 0 branes becomes massive and the other

decays. In the type II description this is simply a choice of the sign of the Wilson line

(relative to η), which altered the form of the semi-classical boundary state. Now, this

difference can be attributed a slightly more physical description. The tachyon makes one

brane massive and causes the other to decay all while destroying the orbifold. In this

T-dual picture, the unaltered branes sit at a special point on the circle.

5. Worldsheet RG and boundary perturbations

5.1 Bulk induced boundary operators

In a more general CFT context, we are interested in the modification of the boundary

theory by the presence of a relevant operator in the bulk. There has been surprisingly

little work in this area, with only recent results like those in [21] and references therein.

While the previous work stressed the addition of a particular boundary operator enforced

by supersymmetry, we might inquire about the RG flow more generally. At the one loop

level, all the necessary information is in [21]. We will adopt their language in what follows.
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Let us start with a CFT and deform it by both bulk and boundary operators of the

form,

S = SCFT +
∑

i

λil
2−hφ

∫

d2zφi(z) +
∑

j

µjl
1−hψ

∮

dxψj(x). (5.1)

Where hO is the dimension of the operator and λ and µ are dimensionless couplings. Given

λi 6= 0, the D-branes are deformed if quantum corrections force µj 6= 0 for some j. In terms

of the beta functions, this true when λi 6= 0, µj = 0 is not a fixed point. The one loop

corrections can be calculated easily, and was shown in [21] that the one loop beta functions

take the form

λ̇k = (2 − hφk
)λ + πCijkλiλj + . . .

µ̇k = (1 − hψ)µk +
1

2
Bikλk + Dijkµiµj + . . . . (5.2)

Here Bik, Cijk and Dijk are the coefficients for the bulk-boundary, bulk and boundary

OPEs respectively. From here, it is clear that if Bik 6= 0 for some relevant boundary

operator (given λ 6= 0), then there will be boundary RG flows induced by the bulk theory.

This is precisely what was found in [21] in the case of a free boson theory at the self-dual

radius.

Let us now us these results for the case of a closed string tachyon (i.e. a relevant bulk

operator). This case was studied independently by [22], but we will repeat the discussion

here in order to make contact the above results. We will focus on the case of momentum or

winding modes tachyons in a free theory with Dirichlet or Neumann boundary conditions.

These theories are easily described using the method of images. In particular, if we perturb

the theory by the operator

φ ∝ (eikX − e−ikX), (5.3)

and impose X = 0 on the boundary, then the bulk-boundary OPE is zero. In other words,

the boundary theory is not deformed if we impose that we sit at the zero of this operator.

However, if we take Neumann conditions on X, or Dirichlet conditions at a different value

of X then the bulk-boundary OPE will be non-zero and the boundary theory will flow away

from the original fixed point. One should note that this isn’t quite what happened in the

SUSY picture. There, the bulk operator that we turned on had no zeros (as a function of

Ω̃). However, SUSY imposes extra structure that allows essentially the same trick without

requiring the tachyon vev to vanish.

Finally, let us consider the more general perturbed CFT. The above statement about

the survival of branes was achieved by finding conformally invariant boundary conditions

that were not modified by the bulk flow. So, let us consider an analogous situation for an

arbitrary CFT. We deform the theory by an operator φ which is relevant or marginal. If

there exist conformally invariant boundary conditions such that 〈φ〉 = 0 on the disk, then

two conclusions follow. First, Bφ1 = 0. This is particularly useful if the bulk operator is

of the form φ(z) =
∏

φi(z) with φi(z)φj(y) ∝ δij. In such a case, there are no induced
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boundary terms for the form ψi1j if 〈φj〉 = 0. The second implication follows from the

statement that

〈φ〉 ∝
∑

Bφj〈ψj〉 = 0. (5.4)

We conclude immediately that either Bφj = 0 or 〈ψj〉 = 0. This does not eliminate the

possibility of induced boundary flows, but does limit the types of deformations that can

occur. In the above cases, this is sufficient to eliminate the one-loop boundary flow.

5.2 Conformal invariance

At the classical level, the statement that the boundary conditions are conformal is the

requirement that T = T̄ on the boundary. This is simply the requirement that the off

diagonal components of the energy-momentum tensor vanish on the real axis (if we work

in the upper half plane). This is the statement that there is no energy flow through

the boundary. Throughout this discussion, we have only insisted on classical conformal

invariance of both the boundary and bulk operators. One might ask whether it is possible

to make the chosen boundary conditions conformal beyond the classical level.

At the quantum mechanical level, conformal invariance requires the vanishing of all

beta functions, including boundary operators. The statement that our boundary conditions

are exactly conformal is equivalent to saying that the beta functions associated with all

boundary operators vanish. In the absence of a tachyon, this requirement imposes the

usual equations of motion, which for the boundary operators can be derived from the DBI

action [23]. The addition of the tachyon should simply change the equations of motion,

causing the brane to move (see [24] for a nice discussion of similar effects in Liouville

theory).

Let us sketch the calculation in the toy CFT described in section 5.1. The calculations

are simpler and contain the relevant physics, but we will briefly comment on the difference

in the SUSY case below. We have already seen the leading term in the beta function

that arises from the bulk operator. Let us now calculate the higher order terms using the

background field method, following [23]. In particular, we will choose boundary conditions

such that Xµ = fµ(ζ) where for simplicity we will only consider µ = 1, 2. Here f is some

function that describes the subspace of the spacetime mapped out by the D-brane. Here,

the fact it is dependant on a single parameter ζ means that this is a D0 brane. For example,

the case of a motionless D0 at the point X1 = 0 on the circle is given by f0 = ζ and f1 = 0.

In what follows, by definition f
(0)
1 ≡ Ω, on the boundary of the worldsheet.

Additional divergences are calculated by expanding Xµ → Xµ+ξ, and then integrating

out ξ. On the boundary we can then expand ξ in ζ and derivatives of f(ζ). The additional

terms in the beta functions for the operator exp(−κX0) will then be proportional to the

derivatives of f . If the beta function cannot be cancelled by setting f1 to a constant, then

this indicates the force on the brane.

The boundary Langragian is given in powers ζ as Lbdy =
∑

L
(n)
bdy(ζ

n). To second order
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in ζ we get

L
(1)
bdy = ζ{f ′

µ∂nXµ − ηµe−κX0(κf ′
0 cos(wΩ) + wf ′

1 sin(wΩ))} (5.5)

L
(2)
bdy =

ζ2

2
{f ′′

µ∂nXµ + ηµe−κX0(((κf ′
0)

2 − κf ′′
0 ) cos(wΩ)

−(wf ′
1)

2 cos(wΩ) − wf ′′
1 sin(wΩ))} (5.6)

where the f
(n)
µ denotes derivates with respect to ζ and ∂n is the derivative normal to the

boundary. The linear piece is set to zero by imposing the boundary conditions. These

will relate the operators ∂nX with the boundary potential (thus they are not independent

boundary operators). One loop diagrams in ζ (when we include all the allowed boundary

operators) lead to divergences in front of the operators in the quadratic Langragian. Thus,

the beta functions for e−κX0 (or more accurately µ) will contain contributions proportional

to derivatives in f .

It should be clear that Dirichlet boundary conditions with cos(wΩ) = 0 eliminate

the divergences renormalizing µ. Furthermore, with these boundary conditions, the bulk

induced piece vanishes as well. Thus, taking modified Neumann conditions on X0 and

setting f
(n)
1 = 0 for all n > 0 is sufficient to set the beta functions to zero. In other words,

this choice of boundary condition is conformal.

For other choices of the Dirichlet boundary condition, there are additional divergences

which will require solving more complicated equations of motion. However, there is no

consistent approximation that lets one terminate the equations of motion at quadratic

order. In particular, loop corrections are not suppressed since the size the circle is string

scale (in other words, w is order 1). Thus control is maintained only while the tachyon vev

and the higher derivatives of f are small. Therefore, the approximation will break down

before we reach the fixed point (in many cases).

Nevertheless, conformal invariance at higher orders in α′ does precisely what one might

expect from the interpretation given in terms of masses. The branes start to roll to the

state of lowest mass, which is a conformally invariant solution. Further analysis is needed

to ascertain whether or not the branes all roll to this point in the large tachyon background.

In the supersymmetric case, the situation is slightly different. The boundary operator

of concern is not induced by a divergent bulk-boundary correlator, but instead by world-

sheet SUSY. In particular, we can repeat background field calculations in the section the

bosonic fields with chiral superfields. The boundary term linear in the perturbation is

L
(1)
bdy =

∫

dθ̃ζ̄(DX̄ − ηD̄X̄)(θ = ηθ̄ = θ̃, z = z̄) (5.7)

where D, D̄ are super-derivatives. The bosonic piece after integrating over θ̃ is precisely

the boundary term given in (3.4). In the case of the CFT, the bulk induced term was what

required moving the D-brane. In the absence of such a term, the first divergence arises at

second order in derivatives of the tachyon vev. Therefore, if we set f
(n)
1 = 0, then conformal

invariance is broken at order κ2. Thus, the boundary conditions used are conformal to the

level of approximation being used.
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6. Discussion

D-branes have been studied under closed string tachyon condensation previously in the

context of gauged linear sigma models [25 – 28]. Linear sigma models have been useful in

the study of closed string tachyons largely because it provides a framework where both

endpoints can be described from a single set of operators. Studying branes in these mod-

els can be done by adding a boundary to the GLSM and following the boundary condi-

tions/operators under the RG flow associated with the tachyon condensation. While this

is has been a successful way to understand the evolution of branes into other branes, it will

not provide any information about branes in the condensate itself. This is of particular

importance when the condensation is localized in time but not space.

In [2], in the sigma model description, extra vacua appeared in the final state. One

might ask if the unmodified branes are actually ending in the extra vacua. In [5], it was

speculated that these extra vacua were related to the sign of the scalar potential in the

Lorentzian description (the F term is strictly positive in the Euclidean description of both

the Heterotic and type II). Both the Wilson line and the sign of the Lorentzian potential is a

function of the T-dual coordinate. If the branes of interest are those that lie at cos(wΩ̃) = 0,

then these are explicitly in at the positive values of the potential. Nevertheless, it is not

impossible that there is a connection between the two.

The branes of interest in the nothing state are equivalent to the D2 branes in the

GLSM. The Wilson lines on these branes are generated from boundary fields coupling to

bulk fields. Meanwhile, the dust vacua arise from the σ vacua of GLSM. This model has
∑

qi < 0, which drives the FI term ρ > 0 in the IR. We will interpret the change in

topology as the appearance of the ‘nothing’ state. The appropriate boundary conditions

on the D2 branes is Σ = Σ̄. The σ vacua may not necessarily take real values, but there

do exist solutions with this property. The role of these additional vacua in GLSMs has

been studied in [26 – 29] including information about D-brane charges. It remains unclear

what relationship the branes in these vacua have to the branes discussed above from a

worldsheet analysis. Understanding relationship between the branes might also clear up

the nature of the relationship between the sign of the (Lorentzian) tachyon potential and

the σ vacua in the GLSM.

There remain many additional open questions. The most obvious being that of the

open strings. In principal, there are worldsheet techniques that might make it possible to

extract interesting information, but the work is ongoing. In general, the results presented

here and elsewhere from worldsheet and GLSM approaches provide some interesting clues.

However, it is clear that these techniques are limited in the types of information that can

be retrieved. AdS/CFT is the only non-perturbative definition of the theory known that

might improve this understanding, but it remains to be seen if we can find an appropriate

context there to study this type of situation.
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